Abstract

ABSTRACTSudden events of seagrass die‐off have been suggested to be induced by invasion of the phytotoxin sulphide under environmental stress generating low oxygen supply in seagrass tissues. Laboratory experiments were conducted with eelgrass (Zostera marinaL.) to measure intra‐plant changes in oxygen and sulphide by means of microelectrodes at different oxygen concentrations in the water column. The objectives were to examine whether sulphide intrusion into seagrass tissues can be induced, to determine the role of plant oxygen status for sulphide intrusion and to determine how fast internal sulphide pools are depleted after internal oxygen supplies have been restored. Under conditions with oxygen partial pressures (pO2) above 7.4 kPa (> 35% of air saturation) within eelgrass rhizomes or meristematic tissues no intrusion of sulphide occurred in spite of high sediment concentrations of gaseous sulphide (> 1000 µm). Lack of sulphide intrusion at high internal pO2suggested that oxygen release from the roots ensured complete re‐oxidation of sulphide in the rhizosphere. Under oxygen stress, however, the experiments clearly demonstrated intrusion of sulphide in eelgrass rhizomes and meristematic tissues. Rates of sulphide intrusion were controlled by internal pO2, which in turn was controlled by water column oxygen concentrations. Maximum internal sulphide content reached 325 µmwhich by far exceeded the 1–10 µmknown to inhibit mitochondrial activity in eukaryotic cells. Sulphide and low levels of oxygen could coexist in the eelgrass tissues reflecting fast internal transport of sulphide and slow rates of sulphide re‐oxidation. Upon re‐establishment of high internal oxygen concentrations the depletion of the sulphide pool was slow (half‐life = 20–30 min) indicating, that sulphide re‐oxidation within the eelgrass tissue was not bacterially or enzymatically facilitated but occurred by simple chemical oxidation. The results of this study are consistent with the proposed detrimental role of sulphide intrusion in events of sudden seagrass die‐off.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.