Abstract

<h3>Abstract</h3> A major goal in synthetic development is to design and construct gene regulatory circuits that control the patterning and morphogenesis of synthetic multicellular structures. In natural development, an interplay between mechanical and chemical communication shapes the dynamics of gene regulatory circuits that underlie patterning and morphogenesis. However, for synthetic gene circuits, how the non-genetic properties of the growth environment impact circuit behavior remains poorly understood. Here, we describe an occurrence of mechano-chemical coupling in synthetic contact-dependent synNotch patterning circuits demonstrating that cell density modulates the transduction of signal between a sender and receiver cell. By exploiting density-dependent signaling, we construct multicellular signal propagation circuits with synNotch and control the patterning outcome both temporally and spatially via cell density gradients established in vitro via plating or small-molecule mediated modulation of proliferation. Our work demonstrates that synthetic gene circuits can be critically impacted by their context, providing an alternate means for programming multi-cellular circuit patterning outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.