Abstract

Water chemistry is one of the most important parameters affecting flotation performance. Various types of ions can dissolve and accumulate in process water depending on ore mineralogy, reagent scheme, grinding medium and chemistry of mine site water. Sulfur-based ions (sulfate, thiosulfate, polythionate) are generally observed in flotation of sulfide ores. High concentrations of these ions may reduce efficiency of the flotation process, causing scale problems. Removal of these ions from process water often requires complex water treatment plants with high capital and operating costs. In this study, partial cleaning of water was investigated as an alternative approach for decreasing high sulphate concentrations of 3000–3800 mg/L down to 1000–1500 mg/L, an acceptable concentration for most sulfide ore flotation plants, by using an ion-exchange resin. For this purpose, detailed adsorption tests were performed using a laboratory-scale column system to determine the most suitable type of resin for adsorption of sulfate and thiosalts, kinetics of adsorption and regeneration of the resins. A strong base anion ion exchange resin (Selion SBA2000) was used in the experiments. The findings from the laboratory scale studies were validated in a Cu-Pb-Zn Flotation Plant in an Iberian mine using a larger scale of column set-up. The results showed that 60–70% of sulphates could be successfully removed from process water. Adsorption capacity of the resin was determined as 80.3 mg SO4/g resin. Concentrations of thiosalts and polythionates were also reduced to nearly zero value from 500 mg/L and 1000 mg/L, respectively. Flowrate of water had a significant effect on adsorption performance. The resin could be regenerated successfully using 2% (w/v) NaOH solution and used multiple times for water treatment.

Highlights

  • Conservation and management of freshwater resources is one of the major challenges of this century

  • The strong base type of resin was found to be more suitable for sulphate removal [28]

  • The kinetic adsorption tests were performed to determine the 2020, rate 10, of adsorption of different treated per unit weight of resin

Read more

Summary

Introduction

Conservation and management of freshwater resources is one of the major challenges of this century. Most ore preparation processes require a high amount of water use, which reveals the need to implement the closed water loop strategy. Flotation is one of the complex processes affected by many variables such as chemistry, operational and equipment parameters. Water management strategy such as recirculation of water from tailings and use of multiple water resources with some freshwater are becoming more important in most of the flotation plants. Since water chemistry has a significant impact on the efficiency of processes, water is regarded as an important variable, and it is generally recirculated in the plant with some freshwater as makeup water

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.