Abstract

1. The concentration of sulphate is low in lakes and sulphur cycling has often been neglected in studies of organic matter diagenesis in lake sediments. The cycling of sulphur is, however, both spatially and temporally dynamic and strongly influences many biogeochemical reactions in sediments, such as the binding of phosphorus. This review examines the control of sulphate reduction and sulphur cycling in sediments of lakes with different trophic status.2. The factors that control the rate of sulphate reduction have not been identified with certainty in the various environments because many factors are involved, e.g. oxygen and sulphate concentrations, temperature and organic matter availability.3. Sulphate reduction is less significant under oligotrophic conditions, where mineralization is dominated by oxic decomposition. The supply of organic matter may not be sufficient to support sulphate reduction in the anoxic parts of sediments and, also, sulphate availability may control the rate as the concentration is generally low in oligotrophic lakes.4. There is a potential for significant sulphate reduction in eutrophic lakes, as both the availability of organic matter and sulphate concentration are often higher than in oligotrophic lakes. Sulphate is rapidly depleted with sediment depth, however, and methanogenesis is generally the most important process in overall carbon mineralization. Sulphate reduction is generally low in acidic lakes because of low sulphate availability and reduced microbial activity.5. It is still unclear which of the forms of sulphur deposits are the most important and under which conditions burial occurs. Sulphur deposition is controlled by the rate of sulphate reduction and reoxidation. Reoxidation of sulphides occurs rapidly through several pathways, both under oxic and anoxic conditions. Only a few studies have been able to examine the importance of reoxidation, but it is hypothesized that most of the reoxidation takes place under anoxic conditions and that disproportionation is often involved. The presence of sulphide oxidizing bacteria, benthic fauna and rooted macrophytes may substantially enhance oxic reoxidation. Deposition of sulphur is generally higher in eutrophic than in oligotrophic lakes because of a number of factors: a higher rate of sulphate reduction, enhanced sedimentation of organic sulphur and less reoxidation as a result of reduced penetration of oxygen into the sediments, a lack of faunal activity and rooted macrophytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.