Abstract
This study aimed to show that modifications in intracellular metabolism are implicated in the pathophysiology of diabetes mellitus and essential hypertension. In fact, total magnesium, calcium, sodium and potassium concentrations, measured in the erythrocytes of normotensive, diabetic and hypertensive patients, have given the following results: a lower intracellular potassium concentration in the erythrocytes of diabetic and hypertensive patients than the erythrocytes of normotensive patients and a more elevated sodium, magnesium, calcium concentrations in the erythrocytes of diabetic and hypertensive patients than the normotensive. Because of the importance of Mg2+ and Ca2+ in metabolic enzyme regulation and their interaction with both Hb and band 3 protein, we examined SO4(2-) kinetic influx in the erythrocytes of normotensive, hypertensive and diabetic patients. The kinetic plots showed different profiles over the three groups and the fluxes were found to be 0.024, 0.061 and 0.072 mmol x (l cells x min)(-1) in normotensive, hypertensive and diabetic patients, respectively. We also found that the Vmax and Km of sulphate influx, obtained by Hofstee plots, increased in the erythrocytes of hypertensive and diabetic patients compared with control cells. In contrast, sulphate influx in the erythrocytes of diabetic and hypertensive patients in the presence of Nifedipine, a calcium antagonist, showed no difference either in the rate constants or in the kinetic profiles, compared to the normotensive control subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.