Abstract
Sulodexide (SDX) is a highly purified glycosaminoglycan with antithrombotic and profibrinolytic properties and reported benefits in thrombotic and atherosclerotic vascular disorders. However, the effects of SDX on vascular function are unclear. We tested whether SDX affects vascular relaxation and examined the potential underlying mechanisms. Isolated segments of male rat abdominal aorta and mesenteric artery were suspended in a tissue bath, and the changes in arterial contraction/relaxation were measured. The α-adrenergic receptor agonist phenylephrine (Phe) (10−9–10−5 M) caused concentration-dependent aortic and mesenteric artery contraction that was reduced in tissues pretreated with SDX (1 mg/ml). In aortic and mesenteric arterial segments precontracted with submaximal concentration of Phe (3 × 10−7–6 × 10−7 M), SDX (0.001–1 mg/ml) caused concentration-dependent relaxation. To test the role of endothelium, SDX-induced relaxation was compared with that of acetylcholine (ACh), a known activator of endothelium-dependent relaxation. In Phe precontracted aorta, ACh relaxation was abolished and SDX relaxation was significantly inhibited by endothelium removal or the nitric oxide synthase (NOS) inhibitor Nω-nitro-l-arginine methyl ester (L-NAME), suggesting a role of NO. In mesenteric artery, ACh relaxation was abolished by endothelium removal, partially blocked by L-NAME, and completely blocked by a mixture of indomethacin, a cyclooxygenase inhibitor and blocker of the PGI2-cAMP pathway, and tetraethylammonium, a blocker of K+ channels and EDHF-dependent hyperpolarization pathway. In comparison, SDX relaxation of mesenteric artery was almost completely inhibited by endothelium removal or NOS inhibitor L-NAME. SDX enhanced vascular relaxation and increased nitrate/nitrite production in response to all ACh concentrations in the aorta, but only to low ACh concentrations (<10−7 M) in mesenteric artery. SDX did not affect aortic or mesenteric artery endothelium-independent relaxation to the NO donor sodium nitroprusside. Thus, SDX promotes arterial relaxation via a mechanism involving endothelium-dependent NO production; an effect that could enhance vasodilation and decrease vasoconstriction in vascular disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.