Abstract

Constructing composite catalysts with refined geometric control and optimal electronic structure provides a promising route to enhance electrocatalytic performance toward the oxygen evolution reaction (OER). Herein, a composite catalyst is prepared with multiple components using chemical vapour deposition method to transform crystalline NiFe2O4 into crystalline NiFe2O4@amorphous S-NiFe2O4 with core-shell structure (C-NiFe2O4@A-S-NiFe2O4), and Fe-NiOOH nanoparticles are subsequently in situ generated on its surface during the process of electrocatalytic OER. The C-NiFe2O4@A-S-NiFe2O4 catalyst exhibits a low overpotential of 275mV while possessing an excellent stability for 500h at 10mA cm-2. The anion exchange membrane water electrolyzer with C-NiFe2O4@A-S-NiFe2O4 anode catalyst obtains a current density of 4270mAcm- 2 at 2.0V. Further, in situ Raman spectroscopy result demonstrates that in situ generated Fe-NiOOH nanoparticles are revealed to act as the catalytic active phase for catalyzing the OER. Besides, introducing A-S-NiFe2O4 in C-NiFe2O4@A-S-NiFe2O4 facilitates the formation of Fe-NiOOH nanoparticles with high-valency Ni, thus increasing the proportion of lattice oxygen-participated OER. This work not only provides an alternative strategy for the design of high-performance catalysts, but also lays a foundation for the exploration of catalytic mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call