Abstract

We fabricated Cu(In,Ga)(S,Se)2 (CIGSSe) solar cells using aqueous spray based deposition, which is inexpensive and covers a large area. To apply the sprayed film to a photoabsorber of a solar cell, post-sulfo-selenization was carried out. Through the sulfo-selenization process, we were able to fabricate various S-alloyed CIGSSe films from S/(S + Se) = 0 (S-0.0) to S/(S + Se) = 0.4 (S-0.4). CIGSSe solar cells were made with the S-alloyed CIGSSe absorbers. Power conversion efficiency of CIGSSe solar cell was found to be increased with S-alloying up to S-0.3, and the best efficiency of 10.89% was obtained with the S-0.3 CIGSSe absorber. Comparison study of S-alloyed CIGSSe solar cells showed that enhanced efficiency in S-0.3 solar cell is due to the increased open-circuit voltage and an improved fill factor, which is induced by S-alloying. In addition, admittance spectroscopy revealed that the defect density of the deep level was developed in the S-alloyed S-0.3 CIGSSe absorber. However, the defect density was observed to be rather reduced. Details of characterization and analysis results are discussed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call