Abstract
In this paper we describe our efforts to develop a sulfur trioxide (SO3) electrolyzer that could lower the temperature of the SO3 decomposition step in the sulfur–iodine and hybrid sulfur thermochemical cycles. The objective is to develop an alternative to the standard process of converting SO3 to SO2, which is thermal decomposition at 830°C and above. Thermodynamic calculations show that high SO3 conversions can be obtained at 590°C if oxygen is removed during the SO3 decomposition stage. One way of achieving oxygen removal during SO3 decomposition is electrolysis, if suitable electrode and electrolyte materials can be found. Active oxygen electrode materials are already developed and we have demonstrated suitability of a thin doped-zirconia electrolyte in this study. The main difficulty came in the development of an active and stable SO3 electrode. Using Ga–V–O/NbB2/Au electrodes we demonstrated high catalytic activity, but could not achieve acceptable electrochemical performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.