Abstract

Coal supercritical water gasification (SCWG) is famous for generating clean gas without SOx pollutant. Study of sulfur transformation characteristics can provide the basis of sulfur removal during hydrogen production by coal gasification in supercritical water (SCW) at the source. In this work, two coals produced from Linfen and Zhangjiamao in China (hereinafter to be referred as L-coal and Z-coal), were chosen as experimental feedstocks to investigate sulfur transformation characteristics during hydrogen production by coal gasification in SCW (550–750 °C, 20 min, 25 MPa). Sulfur transformation pathway and sulfur forms in the products were complex but detected comprehensively. H2S was the only gaseous product instead of SOx, whereas SO42– was the main liquid–sulfur product. Inorganic and organic sulfur compounds were used to investigate sulfur transformation mechanisms. H2S had three sources as follows. First, among inorganic sulfur of raw coal, FeS2 (Pyrite) was chemically stable in SCW lacking of hydrog...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call