Abstract

AbstractHigh‐voltage lithium‐ion batteries (LIBs) have attracted great attention due to their promising high energy density. However, severe capacity degradation is witnessed, which originated from the incompatible and unstable electrolyte‐electrode interphase at high voltage. Herein, a robust additive‐induced sulfur‐rich interphase is constructed by introducing an additive with ultrahigh S‐content (34.04 %, methylene methyl disulfonate, MMDS) in 4.6 V LiNi0.5Co0.2Mn0.3O2 (NCM523)||graphite pouch cell. The MMDS does not directly participate the inner Li+ sheath, but the strong interactions between MMDS and PF6− anions promote the preferential decomposition of MMDS and broaden the oxidation stability, facilitating the formation of an ultrathin but robust sulfur‐rich interfacial layer. The electrolyte consumption, gas production, phase transformation and dissolution of transition metal ions were effectively inhibited. As expected, the 4.6 V NCM523||graphite pouch cell delivers a high capacity retention of 87.99 % even after 800 cycles. This work shares new insight into the sulfur‐rich additive‐induced electrolyte‐electrode interphase for stable high‐voltage LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.