Abstract
Natural wetlands form the largest source of methane (CH(4)) to the atmosphere. Emission of this powerful greenhouse gas from wetlands is known to depend on climate, with increasing temperature and rainfall both expected to increase methane emissions. This study, combining our field and controlled environment manipulation studies in Europe and North America, reveals an additional control: an emergent pattern of increasing suppression of methane (CH(4)) emission from peatlands with increasing sulfate (SO(4)(2-)-S) deposition, within the range of global acid deposition. We apply a model of this relationship to demonstrate the potential effect of changes in global sulfate deposition from 1960 to 2080 on both northern peatland and global wetland CH(4) emissions. We estimate that sulfur pollution may currently counteract climate-induced growth in the wetland source, reducing CH(4) emissions by approximately 15 Tg or 8% smaller than it would be in the absence of global acid deposition. Our findings suggest that by 2030 sulfur pollution may be sufficient to reduce CH(4) emissions by 26 Tg or 15% of the total wetland source, a proportion as large as other components of the CH(4) budget that have until now received far greater attention. We conclude that documented increases in atmospheric CH(4) concentration since the late 19th century are likely due to factors other than the global warming of wetlands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.