Abstract

Abstract The chemical composition and the electronic properties of the n-InSb(1 0 0) surface treated with ammonium sulfide dissolved in water or in 2-propanol has been studied by X-ray photoemission spectroscopy. The solvent determines the mechanism of chemical reaction between InSb(1 0 0) surface and sulfide solution. The variation of the solvent leads to variations in chemical composition and electronic structure of the final sulfide layers. Aqueous sulfide solution withdraws antimony atoms from the InSb(1 0 0) surface very fast due to solubility of antimony sulfides, whereas after treatment with alcoholic sulfide solution the antimony sulfides remain on the surface. The Fermi level at the InSb(1 0 0)/passivation layer interface occurs usually deeply in the conduction band of semiconductor and its position depends on the time of sulfur treatment. However, after prolonged treatment with aqueous sulfide solution and surface depletion with antimony the Fermi level is found in the valence band. Although both solutions remove the native oxide layer, the residual oxygen content is lower after treatment with the solution of ammonium sulfide in 2-propanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.