Abstract

We have determined the solubility of sulfur (S) as sulfide (S2–) for 13 different natural melt compositions at temperatures of 1473–1773 K under controlled conditions of oxygen and sulfur fugacities (fO2 and fS2, respectively). The S and major element contents of the quenched glasses were determined by electron microprobe. The sulfide capacity parameter (CS2–) was used to express S2– solubility as a function of the oxygen and sulfur fugacities according to the equation: log C_{{S^{2 - } }} = log S_{melt} left( {wt% } right) + 0.5log left( {frac{{fO_{2} }}{{fS_{2} }}} right). Sulfide capacities of silicate melts were found to increase with temperature and the FeO content of the melt. We combined our sulfide data at 1473–1773 K with (O’Neill and Mavrogenes, J Petrol 43:1049–1087, 2002) results at 1673 K, and obtained by stepwise linear regression the following equation for sulfide capacity log C_{{S^{2 - } }} = 0.225 + left( {25237X_{FeO} + 5214X_{CaO} + 12705X_{MnO} + 19829X_{{K_{2} O}} - 1109X_{{Si_{0.5} O}} - 8879} right)/T{ }. XMO is the mole fraction of the oxide of M on a single-oxygen basis, and T is in Kelvin. The sulfide capacity equation was combined with sulfate capacity (CS6+) data for similar compositions and at the same temperatures (Boulliung and Wood, Geochim Cosmochim Acta 336:150–164, 2022), to estimate the S redox state (S6+/S2– ratio) as a function of melt composition, temperature and oxygen fugacity. Results obtained are in good agreement with earlier measurements of S6+/S2– for basaltic and andesitic compositions. We observe a significant increase, however, relative to FMQ of the oxygen fugacity of the S2– to S6+ transition as temperature is lowered from 1773 to 1473 K. We used our results to simulate sulfur-degassing paths for basaltic compositions under various redox conditions (FMQ –2 log fO2 units to FMQ + 2). The calculations indicate that, given an initial concentration of 0.12 wt% S in an ascending melt at 250 MPa, most of the S (> 80%) will be degassed before the magma reaches 100 MPa pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call