Abstract

Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5–15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.

Highlights

  • Sulfur finds extensive technological applications such as in production of sulfuric acid, plastics, enamels, antimicrobial agent, insecticide, fumigant, metal glass cements, in manufacture of dyes, phosphate fertilizers, gun-powder and in the vulcanization of rubber, etc. [1–4]

  • Guo et al [18] reported the synthesis of monoclinic sulfur nanoparticles using the mixture of two w/o microemulsion systems

  • In this study we report for the first time synthesis of sulfur nanoparticles in the range of 5–15 nm from H2S gas by catalytic conversion using biodegradable iron chelates in w/o microemulsion system

Read more

Summary

Introduction

Sulfur finds extensive technological applications such as in production of sulfuric acid, plastics, enamels, antimicrobial agent, insecticide, fumigant, metal glass cements, in manufacture of dyes, phosphate fertilizers, gun-powder and in the vulcanization of rubber, etc. [1–4]. Sulfur nanostructures are used in synthesis of sulfur nanocomposites for lithium batteries [5, 6], modification of carbon nanostructures [7, 8], in synthesis of sulfur nanowires with carbon to form hybrid materials with useful properties for gas sensor and catalytic applications [9], Metal-sulfur compounds like ZnS and CdS play important role in nonlinear optical and electroluminescent devices, etc. The synthesis of nanoparticles can be carried out by various methods. Use of microemulsion system is an attractive and simple method as it allows greater control over nanoparticle morphology (size and shape) [16, 17]. Guo et al [18] reported the synthesis of monoclinic sulfur nanoparticles using the mixture of two w/o microemulsion systems. In this study we report for the first time synthesis of sulfur nanoparticles in the range of 5–15 nm from H2S gas by catalytic conversion using biodegradable iron chelates in w/o microemulsion system

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call