Abstract
The behavior of two-dimensional (2D) materials for energy storage systems relates to their morphology and physicochemical properties. Although various 2D materials can be found in different fields, the open access of these materials has greatly hampered their practical applications, such as in lithium-sulfur (Li-S) batteries, where the soluble intermediates should be controlled. Here, we have developed a facile approach to prepare 2D ultrathin interconnected carbon fabrics (ICFs) with "bubble-like" morphology and abundant mesopores using a "blowing bubble" method. Serving as independent meso-sized rooms, nanosulfur dots can be stitched in 2D "bubble-like" ICF, which afford a short electron-/ion-transfer path and thus is beneficial to high reversible capacity. Encapsulated with reduced graphene oxide, a binder-free/free-standing cathode was constructed for advanced Li-S batteries. In addition, the specific energy of a pouch Li-S battery with this interconnected cathode can be achieved to 1.55 Ah@315.98 Wh/kg at 0.1 C. These results suggest that the design of "bubble-like" interconnected porous carbon fabrics and their integration with reduced graphene oxide provide a facile strategy to enhance the electrochemical activity of S and have the potential to be applied to other semiconductors or insulating materials for a wide range of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.