Abstract
We studied about 3400 presolar silicon carbide (SiC) grains from the Murchison CM2 meteorite for C- and Si-isotopic compositions. Among these grains we identified 7 unusual or type C SiC (U/C) grains, characterized by isotopically heavy Si, and 36 supernova type X SiC grains, characterized by isotopically light Si. Selected U/C and X grains were also measured for S-, Mg-Al-, and Ca-Ti-isotopic compositions. We show that the U/C grains incorporated radioactive 44Ti, which is evidence that they formed in the ejecta of Type II supernova (SNII) explosions. Abundances of radioactive 26Al and 44Ti are compatible with those observed in X grains. U/C and X grains carry light S with enrichments in 32S of up to a factor of 2.7. The combination of heavy Si and light S observed in U/C grains is not consistent with abundance predictions of simple supernova models. The isotope data suggest preferential trapping of S from the innermost supernova zones, the production site of radioactive 44Ti, by the growing silicon carbide particles. A way to achieve this is by sulfur molecule chemistry in the still unmixed ejecta. This confirms model predictions of molecule formation in SNII ejecta and shows that sulfur molecule chemistry operates in the harsh and hot environments of stellar explosions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.