Abstract

The dithiophosphinic acid HS(2)P(o-CF(3)C(6)H(4))(2) is known to exhibit exceptionally high extraction selectivities for trivalent minor actinides (Am and Cm) in the presence of trivalent lanthanides. To generate insight that may account for this observation, a series of [PPh(4)][S(2)PR(2)] complexes, where R = Me (1), Ph (2), p-CF(3)C(6)H(4) (3), m-CF(3)C(6)H(4) (4), o-CF(3)C(6)H(4) (5), o-MeC(6)H(4) (6), and o-MeOC(6)H(4) (7), have been investigated using sulfur K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT). The experimental analyses show distinct features in the spectrum of S(2)P(o-CF(3)C(6)H(4))(2)(-) (5) that are not present in the spectrum of 4, whose conjugate acid exhibits reduced selectivity, or in the spectra of 2 and 3, which are anticipated to have even lower separation factors based on previous studies. In contrast, the spectrum of 5 is similar to those of 6 and 7, despite the significantly different electron-donating properties associated with the o-CF(3), o-Me, and o-OMe substituents. The TDDFT calculations suggest that the distinct spectral features of 5-7 result from steric interactions due to the presence of the ortho substituents, which force the aryl groups to rotate around the P-C bonds and reduce the molecular symmetry from approximately C(2v) in 2-4 to C(2) in 5-7. As a consequence, the change in aryl group orientation appears to make the ortho-substituted S(2)PR(2)(-) anions "softer" extractants compared with analogous Ph-, p-CF(3)C(6)H(4)-, and m-CF(3)C(6)H(4)-containing ligands (2-4) by raising the energies of the sulfur valence orbitals and enhancing orbital mixing between the S(2)P molecular orbitals and the aryl groups bound to phosphorus. Overall, we report that sulfur K-edge XAS experiments and TDDFT calculations reveal unique electronic properties of the S(2)P(o-CF(3)C(6)H(4))(2)(-) anion in 5. These results correlate with the special extraction properties associated with HS(2)P(o-CF(3)C(6)H(4))(2), and suggest that ligand K-edge XAS and TDDFT can be used to guide separation efforts relevant to advanced fuel cycle development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call