Abstract

Sulfur (S) isotopes are used to trace metabolic pathways associated with biological S-cycling in past and present environments on Earth. These pathways (sulfate reduction, sulfur disproportionation and sulfide oxidation) can produce unique S isotope signals that provide insight into biogeochemical S-cycling. The S cycle is also relevant for extraterrestrial environments and processes. On early Mars, sulfur existed in different redox states and was involved in a large range of surface processes (e.g. volcanic, atmospheric, hydrothermal and aqueous brines). Sulfur compounds have also been detected on Europa's icy moon surface, with the S cycle implicated in Europa's surface and ocean geochemistry. Given the well-established utility of S isotopes in providing a record for past life on Earth, S isotopes are a valuable tool for identifying biosignatures on Mars and Europa. Here, we review S isotopes as a biosignature, in light of two recent advances in understanding the S cycle in both Mars and Europa: (1) the measurements of δ 34 S in situ at Gale Crater and quadruple S isotopes (QSI) in Martian meteorites; (2) the identification of a likely exogenous origin of sulfur on Europa's surface. We discuss important considerations for unravelling QSI biosignatures in Martian environments, considering high- and low-sulfur environments, atmospheric mass-independent fractionation of sulfur isotopes (S-MIF) signals and metabolic energy-limited niches. For Europa, we describe the potential for S isotopes to probe biogeochemistry, and identify key knowledge gaps to be addressed to unlock S isotopic tools for future life detection efforts. The resulting picture demonstrates how S isotopes will be a valuable tool for Mars sample return, and how future missions can focus on the search for environments where QSI signatures of microbial S-cycling processes have a greater chance of being preserved. For Europa, the first step will be to account for the S isotope composition of the various S pools, to recognize or rule out non-biologically mediated S isotope values, with a focus on experimental examination of potential S isotope signatures from exogenous sulfur sources. Thematic collection: This article is part of the Sulfur in the Earth system collection available at: https://www.lyellcollection.org/cc/sulfur-in-the-earth-system

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call