Abstract

Pyrite from altered basalts from Nàmafjall and Krafla high-temperature fields and deep zones at Reykir, Leira and other low-temperature fields, and aqueous sulfides from Nàmafjall, have δ 34S values of 0 to 2.6%. These values are close to those for postglacial basaltic lavas from the Reykjanes Peninsula. The major source of sulfur in these meteoric hydrothermal systems is the upper-mantle or basalt. At the low-temperature fields, however, the δ 34S values of sulfide decrease with decreasing depth, suggesting the presence of a light sulfur source in the shallower aquifers. In contrast, in the Reykjanes and Svartsengi geothermal fields, where seawater contributes to the hydrothermal systems, sulfide sulfur is distinctly enriched in 34S at all depths except for one Reykjanes pyrite from 84 m depth. The enrichment is about 8%. at the deepest core (1734 m) of Reykjanes and decreases with decreasing depth. These enrichments are most likely due to seawater sulfate being involved in the hydrothermal systems. However, in the Reykjanes fluid, dissolved heavy sulfates are not in isotopic equilibrium with sulfide. Disequilibrium between sulfate and sulfide is also demonstrated in all other Icelandic geothermal systems studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call