Abstract

This study reports a detailed evaluation of how key parameters of operation influence the measurement of sulfur isotopes using laser ablation multiple collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Sulfur isotopes are observed to display a fractionation up to 2‰ δ34S during analysis of pyrite with different laser parameters using a 193nm ArF excimer laser. In order to understand why the laser parameters affect S isotope fractionation when measuring S isotopes in pyrite, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques were used to characterize debris formed during the ablation of pyrite, i.e., morphology and speciation of phases. The results show that pyrite decomposes to two phases: ball-like troilite (FeS) and a sulfur-rich floc-like agglomeration surrounding the troilite. The measured δ34S values vary due to the different proportions of troilite balls and the floc-like material generated under different laser parameters. The proportion of troilite and S was evaluated with a LA-(Quadrupole)-ICP-MS through direct comparison of the counts per second (CPS) ratio of 56Fe to 32S. In contrast to pyrite, natural pyrrhotite shows no decomposition process and the particle size of the debris from pyrrhotite is nearly 10 times larger than that of pyrite (~5μm for pyrrhotite compared to <1μm for pyrite). Therefore, a biased analysis of pyrite may happen using laser ablation although this problem can be minimized using high raster velocity. Last but not least, we provide a case study of S isotope mapping using high raster velocity, which extends the application of the in-situ S isotope analysis technique. The results here carry implications for the choice of settings needed to obtain accurate LA-MC-ICP-MS S-isotope maps of pyrite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call