Abstract
Changes in the cosmic-ray background of the Earth can impact the ozone layer. High-energy cosmic events [e.g. supernova (SN)] or rapid changes in the Earth's magnetic field [e.g. geomagnetic Excursion (GE)] can lead to a cascade of cosmic rays. Ensuing chemical reactions can then cause thinning/destruction of the ozone layer-leading to enhanced penetration of harmful ultraviolet (UV) radiation toward the Earth's surface. However, observational evidence for such UV "windows" is still lacking. Here, we conduct a pilot study and investigate this notion during two well-known events: the multiple SN event (≈10 kBP) and the Laschamp GE event (≈41 kBP). We hypothesize that ice-core-Δ33S records-originally used as volcanic fingerprints-can reveal UV-induced background-tropospheric-photochemical imprints during such events. Indeed, we find nonvolcanic S-isotopic anomalies (Δ33S ≠ 0‰) in background Antarctic ice-core sulfate during GE/SN periods, thereby confirming our hypothesis. This suggests that ice-core-Δ33S records can serve as a proxy for past ozone-layer-depletion events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.