Abstract

AbstractElevated inputs of sulfate to freshwater systems can increase sulfide concentrations in anoxic soils and subsequently destabilize aquatic plant populations, but the interactions between sulfate, other geochemical cycles, and interannual plant population cycles are poorly understood. Increased sulfate loading increases mineralization of nitrogen from litter, but the sulfide produced during this process can limit nitrogen uptake by plants. In some cases, iron may mitigate sulfide's impacts on plants by precipitating iron sulfide. We examined the interannual effects of sulfate loading on mesocosm populations of wild rice, an emergent aquatic plant that undergoes population oscillations and is sensitive to sulfide. Using experimental mesocosms with self‐perpetuating populations, we investigated how population dynamics respond to manipulations of surface water sulfate (10 mg L−1 or 300 mg L−1), sediment iron (4.3 mg g−1 or 10.9 mg g−1 dry weight), and shoot litter (present or removed). Populations exposed to constant 10 mg L−1 sulfate concentrations had stable biomass oscillations of approximately 3‐year periods, consistent with previous studies that demonstrated litter‐driven oscillations in nitrogen availability. Populations exposed to 300 mg L−1 sulfate concentrations produced fewer and smaller seeds and declined to extinction in 6 years or less. We did not find a strong effect of iron loading or litter removal on wild rice biomass or seed production. Our observations show the potential of elevated surface water sulfate to rapidly destabilize wild rice populations under varying iron and organic carbon concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.