Abstract
The epoxide ring-opening reaction in graphene oxide (GO) by nucleophiles is a very fascinating and advanced methodology to develop novel functional material. Herewith, we report an advanced strategy for opening the epoxide ring on the rGO surface via easily an available nucleophile (Na2S), which is further functionalized with O atom to obtain four-membered rings (FMRs). The Cd coordination with the S atom puts extra stress on the FMR leading to the C-C bond cleavage of the four-membered heteroatomic rings on the rGO surface. This strategic approach leads to the fabrication of an innovative metal (II) organo-bis-[1,2]-oxathiin (MOBOT) chemical moiety (M = Cd, Zn). The MOBOT compound further shows enhanced H2 generation activity and hence is promising as a potential photocatalyst for solar hydrogen generation. This compound might also be a potential candidate for optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Inorganic Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.