Abstract

In this work, the development of exo-olefin compounds (R-CH2 C(=CH2 )Z) as chain-transfer agents for the sulfur-free reversible addition-fragmentation chain transfer (RAFT) radical polymerization of methacrylates in homogeneous solution is described. A series of exo-olefin compounds with a methyl methacrylate (MMA) dimer structure as the R group and a substituted α-methylstyrene unit as the -CH2 C(=CH2 )Z (Z: Ph-Y) group were synthesized and used for the radical polymerization of MMA in toluene and PhC(CF3 )2 OH. These compounds underwent transfer of the CH2 C(=CH2 )Z group via addition-fragmentation of the propagating methacryloyl radical. More electron-donating (Y) substituents, such as methoxy and dimethylamino groups, produced polymers with narrower molecular weight distributions. A continuous monomer addition method further improved molecular weight control and enabled the synthesis of colorless, sulfur-free, multiblock copolymers of methacrylates in homogeneous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.