Abstract

We present a bottom-up synthesis, spectroscopic characterization, and ab initio simulations of star-shaped hexagonal zinc oxide (ZnO) nanowires. The ZnO nanostructures were synthesized by a low-temperature hydrothermal growth method. The cross-section of the ZnO nanowires transformed from a hexagon to a hexagram when sulfur dopants from thiourea [SC(NH2)2] were added into the growth solution, but no transformation occurred when urea (OC(NH2)2) was added. Comparison of the X-ray photoemission and photoluminescence spectra of undoped and sulfur-doped ZnO confirmed that sulfur is responsible for the novel morphology. Large-scale theoretical calculations were conducted to understand the role of sulfur doping in the growth process. The ab initio simulations demonstrated that the addition of sulfur causes a local change in charge distribution that is stronger at the vertices than at the edges, leading to the observed transformation from hexagon to hexagram nanostructures. Open image in new window

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call