Abstract

Graphitic carbon nitride (g-C3N4) is considered as an attractive, efficient and newly generated photocatalyst material owing to its distinct properties such as metal free, suitable band gap and high physicochemical stability. Nevertheless, the photocatalytic activity of pure g-C3N4 was limited by the fast recombination rate of photoinduced electron–hole pairs and relatively low specific surface area. In this study, we provide a new prospect to overcome the problem by using another suitable precursor urea-assisted copolymerization with thiourea which is expected to optimize the process of thermal condensation, inhibit agglomeration and improve the specific surface area; meanwhile, the formed isotype heterogeneous junction effectively inhibits charge carrier recombination. The formed g-C3N4 isotype heterojunction photocatalyst manifested significant improvement photocatalytic hydrogen production than the single and pure g-C3N4 sample. This significant enhanced photocatalytic performance is mainly ascribed to inhibited recombination, enriched active site and enlarged specific surface area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call