Abstract

S-doped porous carbon (S/C) has been successfully fabricated from biomass waste (drug residue). The S/C not only has a unique porous structure and channel, but porous structures are interconnected to form a sponge-like structures. The unique structure not only increases the specific surface area and energy storage sites, but also shortens the path of ion transmission and charge transfer. When S/C-1 is used as lithium ion batteries (LIBs) anode, the capacity of 710 mAh g−1 can be achieved after 50 cycles at 0.1 A g−1. The capacity still has 364 mAh g−1 at 5 A g−1 for long-life-cycle. For sodium ion batteries (SIBs), a capacity of 518 mAh g−1 can be delivered at 0.1 A g−1 for 50 cycles, and a capacity of long-life-cycle at 5 A g−1 still maintains 230 mAh g−1. The improving rate capacities of S/C-1 can be attributed to the short diffusion lengths of Li+ and Na+ ions for uniform sponge-like structure, large specific surface area (SSA) and additional active sites. This work has an important opportunity to change the current energy situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.