Abstract

Industrial sulfur dioxide (SO2) has become an important source of environmental pollution in China, and the regional SO2 emission reduction capacity is a comprehensive reflection of cleaner production capacity, environmental regulation, and economic development. It is obvious that high-tech industries play a crucial role in promoting the cleaner production capacity of the whole industry. Simultaneously, only considering the regional emission and the development of high-tech industry in isolation may deviate from actual economic characteristics. Therefore, by using the panel data of 30 provinces in China from 2005 to 2016, this paper adopts spatial autoregression model (SAR), spatial error model (SEM), and spatial Durbin model (SDM) to analyze the effect of the high-tech industry development on SO2 emission reduction under the spatial adjacency matrix (W1), geographic distance matrix (W2), and economic distance matrix (W3). In addition, this paper selects three indicators, which is SO2 removal rate, SO2 emission, and SO2 removal quantity, as explanatory variables, and R&D investment and number of enterprises in high-tech industry are selected to represent the industrial development level. The major conclusions are as follows: (1) The ability of SO2 emission reduction in the local province is significantly affected by the surrounding provinces, showing the agglomeration characteristics of "high-high" or "low-low." (2) The R&D investment of high-tech industry has a negative impact on SO2 removal rate and SO2 removal quantity, but a positive effect on the SO2 emissions for the local province, and has a positive effect on the emission reduction of surrounding provinces. (3) The expansion of high-tech industry has significantly improved the SO2 emission reduction capacity of the local province and its surrounding provinces. The robustness test supports the empirical conclusions of this paper. Finally, this paper puts forward some policy suggestions for government in environmental governance, such as "joint prevention and control" and the promotion of cleaner production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.