Abstract

In this study, an amphiphilic polymer mPEG-HA(SA)-DNs was designed and synthesized to fabricate a multifunctional micellar system to enhance the therapeutic efficacy and reduce the toxic effect of paclitaxel (PTX). The polymer was prepared by introducing mPEG, stearic acid (SA) and 2,4-dinitrobenzenesulfonic acid (DNs) to the backbone of hyaluronic acid (HA). With above modifications, the fabricated micelles could encapsulate PTX in the core with high drug loading. The optimized PTX-loaded micelles had a mean size of 158.3 nm. Upon the effect of mPEG, the mPEG-HA(SA)-DNs micelles reduced the non-specific protein adsorption. In vitro drug release study revealed the excellent glutathione (GSH)-triggered PTX release behavior of the micelles. Moreover, GSH could trigger the detachment of DNs segment from mPEG-HA(SA)-DNs, and result in the release of SO2. In vitro and in vivo antitumor efficacy studies demonstrated that the PTX-loaded mPEG-HA(SA)-DNs micelles exhibited outstanding tumor suppression effect. The micelles would be potential carriers for combination cancer therapy by SO2 and PTX.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call