Abstract

Chemodynamic therapy (CDT), as a powerful tumor therapeutic approach with low side effects and selective therapeutic efficiency, has gained much attention. However, the low intracellular content of H2O2 and the cellular bottleneck of low intracellular oxidative reaction rates at tumor sites have limited the antitumor efficacy of CDT. Herein, a series of sulfur-deficient engineered biodegradable cobalt sulfide quantum dots (CoSx QDs) were constructed for improved synergistic photothermal- and hyperthermal-enhanced CDT of tumors through regulating the photothermal conversion efficiency (PCE) and Fenton-like activity. Through defect engineering, we modulated the PCE and promoted the Fenton catalytic capability of CoSx QDs. With increasing defect sites, the Fenton-like activity improved to generate more toxic •OH, while the photothermal effect declined slightly. In light of above unique superiorities, the best synergistic effects of CoSx QDs were obtained through comparing their PCE and catalytic activity by regulating the sulfur defect fraction degree in these QDs during the synthetic process. In addition, the ultrasmall size and biodegradation endowed QDs with the ability to be rapidly decomposed to ions that were easily excreted after therapy, thus reducing biogenic accumulation in the body with lowered systemic side effects. The in vitro/vivo results demonstrated that the photothermal- and hyperthermal-enhanced chemodynamic effect of CoSx QDs can enable remarkable anticancer properties with favorable biocompatibility. In this study, the defect-driven mechanism for the photothermal-enhanced Fenton-like reaction provides a flexible strategy to deal with different treatment environments, holding great promise in developing a multifunctional platform for cancer treatment in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.