Abstract
Stable 1,2-disulfanylalkene palladium complexes [(RS-CH=CR′-SR)PdCl2] were synthesized in 85–94% yield by reaction of palladium(II) chloride with sulfur-containing ligands RS-CH=C(R′)-SR (analogs of dithiolate ligands). The structure of the complexes was studied by NMR spectroscopy and quantum-chemical methods. The binding energy in palladium complexes with bis(arylsulfanyl)- and bis(alkylsulfanyl)alkenes was estimated (DFT) at 50 and 56 kcal/mol, respectively. Variation of substituents on the sulfur atoms is a convenient tool for fine tuning of the ligand properties and controlling the strength of the complex. The bite angle of the ligands does not depend on the substituent nature and is 88–89°, which is typical of square-planar complexes. According to the bite angle, the examined ligands are analogs of well known bidentate phosphine ligands, but the former are more labile since the corresponding binding energy is lower by 36 kcal/mol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.