Abstract
The sulfur isotope composition of 86 sulfide minerals from the Middle Proterozoic, metamorphosed, stratiform, sediment-hosted Zn-Pb-CU sulfide deposits of Dariba and Sindeswar Kalan located within the Rajpura-Dariba belt in Rajasthan, NW India, have been determined. In addition, 16 carbonaceous and 2 carbonate rock samples from the ore zone have been analyzed for their Ctot and Corg contents and carbon isotope compositions. The sulfur isotope compositions range from 9.1‰ to −6.7‰ (mean value of 1.9‰). Increasing δ34S values stratigraphically upward are observed, particularly for pyrite and pyrrhotite suggesting a syngenetic origin for the sulfur. No marked lateral isotopic variations or isotopic variation in minerals from successive laminae in banded ore samples occur. Fractionation of sulfur isotopes between coexisting sulfides suggests that the original isotopic pattern was basically preserved during the amphibolite-facies metamorphism suffered by the deposits. Corg in carbonaceous rocks ranges 0.5–9.3 wt%, with δ13C values between −21‰ and −31‰ (mean of −25.4‰) in keeping with the biogenic derivation of the carbon. Recrystallized dolostones have δ13C values close to −14.4‰ Geological evidence and isotopic features are consistant with the following genetic scheme: (a) base-metal ores along the belt formed from geothermal emanations carrying H2S, produced by the chemical reduction of seawater sulfates and leaching of mafic volcanics, in a semiclosed (with respect to SO4), shallow-water, rift-related basin with high biological activity; (b) pyrite and pyrrhotite formed diagenetically by bacterial reduction of sulfate in pore seawater in a system open to H2S, thus bringing about the gradual enrichment of 34S in these minerals stratigraphically upward; and (c) northward in the belt, at Sindeswar Kalan, the basin of ore deposition was relatively more open.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.