Abstract
The formation of hydrogen sulfide in car exhaust is undesirable due to unpleasant odor and toxicity of H2S gas. H2S release can be suppressed by the addition of a NiO scavenger to a three-way catalyst (TWC). In this work, Pd–Ni bimetallic catalysts were prepared by the co-addition of Pd and Ni to γ-Al2O3 or Al2O3-La2O3 support, by the impregnation method. Different concentrations of a propionic acid aqueous solution were used as the impregnation solvent. The structure of prepared catalysts was characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and temperature-programmed reduction (TPR) techniques. Catalyst poisoning by SO2 was simulated under lean conditions and H2S release under rich conditions. XRD and TPR measurements revealed the effect of the impregnation solvent concentration on the ratio between NiO and NiAl2O4 spinel species and the reducibility of Ni species. Co-addition of Pd with Ni was proven to be beneficial for H2S suppression. Prepared bimetallic catalysts released considerably less H2S compared to physical mixtures of Pd/Al2O3 with NiO. The presence of bulk and well dispersed NiO on Pd–Ni catalysts assisted in sulfur release in the form of sulfur oxides rather than H2S. Bimetallic catalysts supported on Al2O3-La2O3 were found to release more H2S compared to catalysts on γ-Al2O3. The use of diluted solvent in bimetallic catalysts preparation decreased H2S release from Pd–Ni catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.