Abstract

We combine crossed-beam velocity map imaging with high-level ab initio/transition state theory modeling of the reaction of S(3P) with 1,3-butadiene and isoprene under single collision conditions. For the butadiene reaction, we detect both H and H2 loss from the initial adduct, and from reaction with isoprene, we see both H loss and methyl loss. Theoretical calculations confirm these arise following intersystem crossing to the singlet surface forming long-lived intermediates. For the butadiene reaction, these lose H2 to form thiophene as the dominant channel, H to form the detected 2H-thiophenyl radical, or ethene, giving thioketene. For isoprene, additional reaction products are suggested by theory, including the observed H and methyl loss radicals, but also methyl thiophene, thioformaldehyde, and thioketene. The results for S(3P) + 1,3-butadiene, showing direct cyclization to the aromatic product and yielding few bimolecular product channels, are in striking contrast to those for the analogous O(3P) reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.