Abstract

Cadmium (Cd) is harmful for humans and animals, especially for the reproductive system. However, the mechanism of its toxicity has not been elucidated, and how to alleviate its toxicity is very important. This study aimed to explore the role and mechanism of action of sulforaphane (SFN) in protecting mouse Leydigs (TM3) cells from cadmium (Cd)-induced damage. The half-maximal inhibitory concentration (IC50) of Cd and the safe doses of SFN were determined using a methyl thiazolyl tetrazolium (MTT) assay. The testosterone secretion from TM3 cells was measured using the enzyme-linked immunosorbent assay. The intracellular oxidative stress was evaluated using corresponding kits. The cell apoptosis was detected using flow cytometry. The mRNA expression of genes associated with NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling was detected using reverse transcription–polymerase chain reaction, including Nrf2, heme oxygenase I (HO-1), glutathione peroxidase (GSH-Px), NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase (γ-GCS). The protein expression of Nrf2, GSH-Px, HO-1, γ-GCS, and NQO1 was detected using Western blot analysis. The results showed that the IC50 of Cd to TM3 cells was 51.4 µmol/L. SFN reduced the release of lactate dehydrogenase from Cd-exposed cells. Cd + SFN 2.5 treatment significantly elevated testosterone concentration compared with the Cd group (p < 0.05). SFN significantly increased total superoxide dismutase (T-SOD) and GSH-Px activity and GSH content in Cd-treated cells (p < 0.05; p < 0.01), inhibited the production of malondialdehyde or reactive oxygen species caused by Cd (p < 0.05; p < 0.01), and reduced the apoptotic rate of Cd-induced TM3 cells (p < 0.01). SFN upregulated the mRNA expression of Nrf2, GSH-Px, HO-1, NQO1, and γ-GCS in Cd-treated cells, indicating the protective effect of SFN against Cd-induced oxidative stress or cell apoptosis by activating the Nrf2/ARE signaling pathway.

Highlights

  • Cadmium (Cd) is a toxic heavy metal often found in industrial and agricultural pollutants.It could be absorbed by animals from contaminated food, water and air

  • SFN upregulated the mRNA expression of NF-E2-related factor 2 (Nrf2), GSH-Px, HO-1, NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase (γ-GCS) in Cd-treated cells, indicating the protective effect of SFN against Cd-induced oxidative stress or cell apoptosis by activating the Nrf2/antioxidant response element (ARE) signaling pathway

  • The IC50 of Cd for TM3 cells was determined as 51.4 μmol/L

Read more

Summary

Introduction

Cadmium (Cd) is a toxic heavy metal often found in industrial and agricultural pollutants. It could be absorbed by animals from contaminated food, water and air. The accumulation of Cd causes damage to the body [1,2]. Cd is toxic to the kidney, liver, bone, lung, and testis. Damage to testis is the major harm of chronic Cd accumulation [3,4,5]. The reproductive toxicity of Cd manifests mainly

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.