Abstract

Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties via the Nrf2 pathway. We have explored the effect of SFN in a model of acquired epilepsy induced by Li-Cl pilocarpine in immature rats (12 days old). Energy metabolites PCr, ATP, glucose, glycogen, and lactate were determined by enzymatic fluorimetric methods during the acute phase of SE. Protein expression was evaluated by Western blot (WB) analysis. Neuronal death was scored on the FluoroJadeB stained brain sections harvested 24 h after SE. To assess the effect of SFN on glucose metabolism we have performed a series of 18F-DG μCT/PET recordings 1 h, 1 day, and 3 weeks after the induction of SE. Responses of cerebral blood flow (CBF) to electrical stimulation and their influence by SFN were evaluated by laser Doppler flowmetry (LDF). We have demonstrated that the Nrf2 pathway is upregulated in the CNS of immature rats after SFN treatment. In the animals that had undergone SE, SFN was responsible for lowering glucose uptake in most regions 1 h after the induction of SE. Moreover, SFN partially reversed hypometabolism observed after 24 h and achieved full reversal at approximately 3 weeks after SE. Since no difference in cell death was observed in SFN treated group, these changes cannot be attributed to differences in neurodegeneration. SFN per se did not affect the glucose uptake at any given time point suggesting that SFN improves endogenous CNS ability to adapt to the epileptogenic insult. Furthermore, we had discovered that SFN improves blood flow and accelerates CBF response to electrical stimulation. Our findings suggest that SFN improves metabolic changes induced by SE which have been identified during epileptogenesis in various animal models of acquired epilepsy.

Highlights

  • Epilepsy is the fourth most common neurological disease (Hirtz et al, 2007), seriously affecting the quality of life of the patients

  • Our experiment focuses on the reversal of all these changes which should manifest as brain hypermetabolism observed in the acute phase of epileptogenesis – immediately post insult, followed by hypometabolism in the latent epileptogenesis phase (Dubé et al, 2001; Knowlton et al, 2001; Sarikaya, 2015; McDonald et al, 2017)

  • We aimed to establish whether SFN causes upregulation of nuclear factor erythroid two-related factor 2 (Nrf2) via its well-established pathway (Alfieri et al, 2013); according to our knowledge, in vivo experiments involving the action of SFN in immature rats had not been performed

Read more

Summary

Introduction

Epilepsy is the fourth most common neurological disease (Hirtz et al, 2007), seriously affecting the quality of life of the patients. Most cases are treatable with antiepileptic drugs (AEDs), about a third of the epilepsy patients are presented with pharmacoresistant forms of epilepsy (Weaver and Pohlmann-Eden, 2013), with temporal lobe epilepsy (TLE) being the most common refractory subtype (Engel, 1996). There is an ongoing search for new drugs that could diminish the number of refractory cases and bring relief to the patients (Weaver and Pohlmann-Eden, 2013). A substantial amount of research is aimed onto the process of how epilepsy develops over time (epileptogenesis) – i. We should be able to prevent acquired epilepsies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call