Abstract

The aim of the present study was to investigate the role of endoplasmic reticulum (ER) stress in bisphenol A (BPA) – induced hepatic lipid accumulation as well as the protective effects of Sulforaphane (SFN) in this process. Human hepatocyte cell line (LO2) and C57/BL6J mice were used to examine BPA-triggered hepatic lipid accumulation and the underlying mechanism. Hepatic lipid accumulation, triglycerides (TGs) levels, the expression levels of lipogenesis-related genes and proteins in the ER stress pathway were measured. It was revealed that BPA treatment increased the number of lipid droplets, the levels of TG and mRNAs expression of lipogenesis-related genes, and activated the ER stress pathway. These changes were inhibited by an ER stress inhibitor 4-phenylbutyric acid. SFN treatment abrogated BPA-altered hepatic lipid metabolism and ameliorated BPA-induced ER stress-related markers. Together, these findings suggested that BPA activated ER stress to promote hepatic lipid accumulation, and that SFN reversed those BPA effects by alleviating ER stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.