Abstract

The mutation rate of proline in the position 197 (Pro197) in acetohydroxy acid synthase (AHAS) is highest among sulfonylurea (SU) herbicide-resistance mutants. Therefore, it is significant to investigate the resistance mechanism for the mutation and to develop the herbicides specific to the mutants. SU herbicide resistance mechanism of the mutants, 197Ser, 197Thr and 197Ala, in AHAS were targeted for designing new SU-herbicide. We did molecular dynamics (MD) simulation for understanding SU herbicide-resistance mechanisms of AHAS mutants and designed new herbicides with docking and MD evaluations. We have found that mutation to 197Ala and 197Ser enlarged the entrance of the active site, while 197Thr contracted. Map of the root mean square derivation (RMSD) and radius gyrations (Rg) revealed the domain indicating the conformations for herbicide resistant. Based on the enlarging-contracting mechanism of active site entrance, we designed new herbicides with substitution at the heterocyclic moiety of a SU herbicide for the complementary binding to the changed active site entrances of mutants, and designed new herbicides. We confirmed that our screened new herbicides bonded to both AHAS wild type and mutants with higher affinity, showing more stable binding conformation than the existing herbicides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call