Abstract

Modulating the vitamin D receptor (VDR) is an effective way to treat for cancer. We previously reported a potent non-secosteroidal VDR modulator (sw-22) with modest anti-tumor activity, which could be due to its undesirable physicochemical and pharmacokinetic properties. In this study, we investigated the structure-activity and structure-property relationships around the 2′-hydroxyl group of sw-22 to improve the physicochemical properties, pharmacokinetic properties and anti-tumor activity. Compounds 19a and 27b, the potent non-secosteroidal VDR modulators, were identified as the most effective molecules in inhibiting the proliferation of three cancer cell lines, particularly breast cancer cells, with a low IC50 via the distribution of cell cycle and induction of apoptosis by stimulating the expression of p21, p27 and Bax. Further investigation revealed that 19a and 27b possessed favorable rat microsomal metabolic stability (2.22 and 2.3 times, respectively, more stable than sw-22), solubility (43.9 and 50.2 times, respectively, more soluble than sw-22) and in vivo pharmacokinetic properties. In addition, 19a and 27b showed excellent in vivo anti-tumor activity without cause hypercalcemia, which is the main side effect of marketed VDR modulators. In summary, the favorable physicochemical properties, pharmacokinetic properties and anti-tumor activity of 19a and 27b highlight their potential therapeutic applications in cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.