Abstract

Sulfonated polymeric materials are widely applied in the development of high-performance proton-conducting membranes. In terms of sulphating agents, concentrated sulphuric- and chlorosulfonic acids, a mixture of methanesulfonic- and concentrated sulphuric acid, and acetyl sulphate are most commonly used. A high degree of sulfonation of membrane materials provides efficient proton transport and excellent current-voltage characteristics of fuel cells. In order to develop a new proton-conducting membrane, the sulfonation of copolymers of styrene and allyl glycidyl ether is carried out, the composition and structure were confirmed by elemental analysis, IR and NMR spectroscopy. Obtained copolymers represent powdery substances, having a cream to dark brown colour, and are characterised by good solubility in benzene and acetone. The degree of sulfonation varies from 12 to 98 mol. %. Additionally, a quantum chemical study of the sulfonation mechanism of styrene and allyl glycidyl ether copolymers is studied using Gaussian 09 software; MP2//B3LYP level of theory and 6-311++G(d,p) basis set and composite CBS-QB3 method. Studying the process of copolymers sulfonation and comparing the obtained results with the data of quantum chemical calculations is essential for the development of additional methods for obtaining effective proton-conducting membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call