Abstract

Sulfonated polyaniline–titanium dioxide (SPAni–TiO 2) hybrid composites have been synthesized by using a new strategy in one-pot system of UV-cured polymerization method. Aqueous solution of aniline and orthoanilinic acid comonomers, a free-radical oxidant and titania precursor were irradiated by UV rays. Hydrolysis and reprecipitation of the titania precursor in aqueous aniline and orthoanilic acid lead to the formation of titanium dioxide particles which in turn catalyze oxidation of comonomers to sulfonated polyaniline. The resultant SPAni–TiO 2 composites were characterized by using different spectroscopy analyses like X-ray diffraction, UV–visible (UV–vis) and infrared spectroscopy. The UV–vis absorption bands revealed that SPAni–TiO 2 nanocomposites are optically active and the blue-shifted peaks due to the presence of titania within the SPAni matrix. Scanning electron microscopy and transmission electron microscopy of the nanocomposite showed a uniform size distribution with spherical and granular morphology. Thermogravimetric analysis revealed that the SPAni–TiO 2 composites have a good thermal stability than the pristine SPAni.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.