Abstract

ABSTRACTPoly(diallyldimethylammonium chloride) (PDDA) and phosphotungstic acid (PTA) were used as cationic and anionic polyelectrolyte layers, respectively, in an alternating fashion to enhance the methanol barrier property and oxidative stability of sulfonated poly (phenylene ether ether sulfone) (SPEES) proton exchange membranes (PEMs). The multilayer PEMs were characterized by AFM, FTIR, and AC impedance spectroscopy. Methanol permeability of the multilayered membranes was found to be much lower than the bare SPEES membrane. The multilayered membranes displayed significantly improved oxidative stability and dimensional stability compared to pristine SPEES membrane. Conversely, the water uptake (%) and proton conductivity (S cm−1) of the prepared membranes decrease to some extent with increasing the PDDA/PTA bilayers in comparison to the pristine SPEES membrane. The maximum relative selectivity (2.23 × 104 S cm−3 s) and retained weight (88.9%) were observed for SPEES‐[PDDA/PTA]5 multilayered membrane. The obtained results exposed the possibility of SPEES‐[PDDA/PTA]5 multilayered membrane to serve as high‐performance PEMs in direct methanol fuel cells. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47344.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.