Abstract

Polymer nanocomposite membranes based on sulfonated poly(arylene ether sulfonate) (SPAES) containing a flake filler (Laponite) with varying degrees of sulfonation, were prepared and characterized for application in direct methanol fuel cells (DMFCs). Unlike most other clays, Laponite crystals are very small in size with a very low aspect ratio (diameter to thickness ratio) of 25–30. They improve the mechanical, thermal properties and decreased the fuel permeability. However, polymer composite membranes containing non-proton conducting inorganic particles tend to show low proton conductivity, as compared with pristine polymer membranes. To resolve this problem, prior to the preparation of the composite membranes, Laponite-Na+(NLa) was sulfonated with various amounts of organo silanes (3-Mercaptopropyl trimethoxysilane (SH-silane)) via an ion exchange method. Functionalized Laponite with the organic silane compound showed higher ion exchange capacity and ion conductivity, respectively. In order to minimize the loss of proton conductivity while reducing the methanol permeability, various amounts (0.5–2.0 wt%) of the organically sulfonated Laponite (SLa) were introduced into the SPAES matrices. The performances of hybrid membranes for DMFCs in terms of mechanical properties, behavior of water in membranes, proton conductivity and methanol permeability were investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.