Abstract
A novel series of terpolymers (SQF) containing sulfophenylene, quinquephenylene, and perfluoroalkylene groups in the polymer main chain were designed and synthesized as proton exchange membranes for fuel cells. The terpolymers with high molecular weight (Mw = 179–207 kDa, Mn = 41–50 kDa) and different ion exchange capacity (IEC) values (1.70, 2.56, and 3.34 mequiv g–1) gave flexible self-standing membranes by solution casting. Compared to the two-component (sulfophenylene and quinquephenylene segments) copolymer membranes, the incorporation of the third component, perfluoroalkylene groups, resulted in better water utilization for the proton conduction, while it did not alter the other properties such as gas permeability and mechanical strength. The selected membrane (SQF-3 with IEC = 2.56 mequiv g–1) exhibited high fuel cell performance under high- and low-humidity conditions with maximum power density reaching 0.97 W cm–2 at 100% RH (relative humidity) and 0.82 W cm–2 at 30% RH, respectively, at a curren...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.