Abstract

Polymer solar cells (PSCs) with high short current density (Jsc) have been fabricated through a facile way by using a low-cost polyelectrolyte-modified poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, P VP Al 4083) bilayer film as anode buffer layer. Spin-coating a layer of sulfonate poly(aryl ether sulfone) (SPES) on the surface of PEDOT:PSS hole-transporting layer (HTL) is found to dramatically improve the Jsc value even up to 21.66 mA cm–2. The notable Jsc is demonstrated to be correlated with interaction between the SPES and PEDOT, which removes the insulator of PSS with formation of continuous PEDOT domains, consequently leading to the improved conductivity and more imitate interfacial contact. It should be noted that the notable Jsc also partly results from the effect of a second anode due to the high conductivity of SPES-modified PEDOT:PSS. Through systematically investigation on a series of devices with different areas, it can be found that a real effective area of the devices should be carefully addressed to exclude the effect of a second anode, especially when a highly conductive interfacial material is incorporated. More interestingly, apart from the successful application in HTL, SPES also works well as transparent electrode. Compared with the pristine PEDOT:PSS (PH1000) anode, SPES-modified PH1000 as transparent anode achieves a dramatically increased performance in the ITO-free PSCs together with overall improved parameters, even equal to the one based on ITO anode. These findings indicate that solution-processed SPES shows a great potential in the fabrication of highly efficient PSCs as well as large-area, flexible printable PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call