Abstract

Veterinary antibiotics are widely used in many countries worldwide to treat diseases and protect the health of animals. However, the effects of sulfonamide antibiotics introduced via manure and wastewater irrigation on nitrogen (N) loss in the soil-plant system remain poorly understood. Here, we conducted a pot experiment to assess the effects of sulfamethazine (SMZ) and its degradation product (2-amino-4,6-dimethylpyrimidine, ADPD) at four concentration gradients (i.e., 0, 1, 10, 100 mg kg−1) on nitrous oxide (N2O) and ammonia (NH3) emissions, and the abundances of N-cycling functional genes and sulfonamide resistance genes. We also collated 350 observations from 62 published papers and performed a meta-analysis of antibiotic addition effects on N2O emission and soil net nitrification and denitrification. Antibiotics additions showed an inhibitory effect on N2O emissions, which accords with the trend of our meta-analysis showing a significant decrease of 32%. The decreased N2O emissions were attributed to the significant reduction in the abundances of total bacterial communities, ammonia oxidizers, and nir-type denitrifiers and to the resultant changes in soil inorganic N. N2O emissions did not differ between non-environmentally relevant concentrations for SMZ but lowered with increasing ADPD concentrations. This discrepancy can be explained by differential responses of the gene abundances of ammonia oxidizers and nirK-type denitrifiers and the development of antibiotic resistance genes in the highest concentration following antibiotic additions. Antibiotic additions increased soil NH3 volatilization but did not affect vegetable yield. Therefore, these findings provide insight into how the prevalence of antibiotics in soils could alter the N-cycling process and associated gas emissions, with implications for understanding the ecological risks of antibiotics in agriculture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.