Abstract

The objective of this study is to see if random alkyl ethers of various sulfoalkyl ether cyclodextrins can be synthesized and characterized. The purpose of the alkylation was to test the hypothesis that an increase in the "height" of a cyclodextrins cavity would help in the binding/complexation of larger more structurally complex molecules. The synthesis of new cyclodextrin derivatives comprising a mixture of sulfoalkyl ether and alkyl ether substituents on the same cyclodextrin ring was performed in aqueous alkaline solutions using various sultones and alkylsulfates. The method presented provided an easy and efficient way to modify cyclodextrins avoiding the use of organic solvents and high quantities of alkylating agents and could be carried out in either a two step or "one pot" single step process. Purification was by neutralization followed by ultrafiltration. The derivatives were characterized by 1D, ((1)H and (13)C), and a 2D NMR technique (HMQC, Heteronuclear Multiple Quantum Coherence). The combination of these techniques allowed an analysis of the degree of substitution and the site of substitution on the cyclodextrin (CD) nucleus. For both beta- and gamma-CD, sulfoakylation was preferred on the 2 > 3 > 6 hydroxyls while alkylation was preferred 6 > 2 > 3. Due to the simultaneous presence of short alkyl ether chains and negatively charged sulfoalkyl ether chains, these mixed water-soluble cyclodextrin derivatives, especially those of gamma-cyclodextrin, should be able to bind more complex drugs. The improved binding capacity of these new modified CDs with the model drug 6alpha-methylprednisolone is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.