Abstract
Sulfite has been used as a classic reductant for the dehalogenation and reduction of organic compounds for a long time, it is recently deemed as a promising alternative (for persulfate) to generate sulfate radical for wastewater treatment due to its low price and eco-toxicity. In contrast with the enormous work developed in the field of tetracycline (TC) degradation via PMS activization, sulfite activization could play a important role in TC degradation but there is only very few available reports in this area. Herein, the novel and efficient CoNHs nanocatalyst is designed and developed, via immobilization of hydrangea-shaped Co3O4 nanoparticles onto graphitic carbon nanosheet (GCN), for the degradation of tetracycline via sulfite activation. The detailed characterizations have confirmed that CoNHs possesses a nanohydrangea-shaped structure with high microporosity. The comparison with other supports (such as CeO2 and MoS2), CoNHs provides the highest degradation efficiency in TC degradation, due to the synergistic effect between Co3O4 and GCN. Free radical quenching experiments and EPR analysis confirm that SO4•- and O2•- are major reactive oxygen species in the CoNHs/sulfite system. This work could provide a simple, economical and durable cobalt-based catalyst for organic wastewater treatment via sulfite activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.