Abstract

Small bodies of pyrrhotite, chalcopyrite, minor pentlandite, and magnetite occur at the peripheries of podiform bodies of chromite in ultramafic ophiolitic rocks at Tsangli, Eretria, central Greece. Banding of magnetite and sulfide within the bodies is reminiscent of magmatic banding. A magmatic origin has been proposed for similar sulfide masses in the Troodos ophiolite (Panayiotou, 1980). The compositions of the host rocks, chromite, and of the sulfides have been investigated. On average, the sulfide mineralization, recalculated to metal content in 100% sulfide, contains 0.55% Ni, 5.15% Cu, 0.29% Co, 9 ppb Pd, 179 ppb Pt, 16 ppb Rh, 112 ppb Ru, 31 ppb Ir, 58 ppb Os, and 212 ppb Au. These metal contents, particularly the high Cu/(Cu+Ni) ratio of 0.78 and the Pt/(Pd+Pt) ratio of 0.95, are inconsistent with the sulfides having reached equilibrium with their Ni rich host rocks at magmatic temperatures and accordingly it is concluded that they are not of magmatic origin. The average δ 34S value of the sulfide bodies is +2 while that of a sample of pyrite from country-rock schist is −15.6. These values are inconclusive as to the origin of the sulfur. It is suggested that the sulfides have been precipitated by hydrothermal fluids, possibly those responsible for the serpentinization of the host rocks. The source of the metals may have been the host rocks themselves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call